Geometric Characterization of Monge-Ampere Equations

Atsushi YANO (Hokkaido University)
yano@math.sci.hokudai.ac.jp

Abstract

This paper discusses the geometric characterization of Monge-Ampere equations. Let D be a differential system on a manifold \mathcal{M}, i.e., a subbundle of the tangent bundle of \mathcal{M}. The first order system D is defined by $\mathcal{L}(\mathcal{D}) = \mathcal{D} \cap \mathcal{D}$, where $\mathcal{L}(\mathcal{D})$ is the characteristic system of the prolongation of \mathcal{D}.

1. Introduction

Let D be a differential system on a manifold \mathcal{M}, i.e., a subbundle of the tangent bundle of \mathcal{M}. The first order system D is defined by $\mathcal{L}(\mathcal{D}) = \mathcal{D} \cap \mathcal{D}$, where $\mathcal{L}(\mathcal{D})$ is the characteristic system of the prolongation of \mathcal{D}.

2. Lagrange-Grassmann bundle and single second-order PDEs

Let $(\mathcal{C}, \mathcal{D})$ be a contact manifold, i.e., a differential system of corank 1 on a manifold such that \mathcal{C} is locally defined by a 1-form Θ satisfying $\Theta (\partial J)^n = 0$ at each point.

The canonical bundle $\mathcal{L}(\mathcal{T}(\mathcal{L}))$ of $\mathcal{L}(\mathcal{T}(\mathcal{L}))$ is defined by $\mathcal{L}(\mathcal{T}(\mathcal{L})) = \mathcal{C} \cap \mathcal{D}$.

We consider a second order system $\mathcal{D}(\mathcal{L}, \mathcal{D})$ of \mathcal{L} and \mathcal{D} with two independent variables. The dimension of \mathcal{D} is 5.

3. Monge-Ampere system

Monge-Ampere system on a 5-dimensional contact manifold \mathcal{M} is an EDS (an ideal)

$\mathcal{D} = \{ \mathcal{D}, \partial \mathcal{D}, \mathcal{L}(\mathcal{D}), \mathcal{L}(\mathcal{D}) \}

4. Prolongation of Monge-Ampere system

If the equation is hyperbolic, it is a hyperbolic Monge-Ampere system around \mathcal{M}.

Theorem 1 (hyperbolic)

Let D be a hyperbolic Monge-Ampere system on a manifold \mathcal{M}. Then D has two decomposable 2-forms ω_1 and ω_2 around each point such that $\partial \mathcal{D} \supset \omega_1 \wedge \omega_2 \wedge \omega_3$ (mod \mathcal{D}).

Then Monge characteristic system \mathcal{N}_1 and \mathcal{N}_2 of \mathcal{D} is defined by $\mathcal{N}_i = \{ \mathcal{D}, \partial \mathcal{D}, \mathcal{N}_i \}$ (for $i = 1, 2$).

Theorem 2 (hyperbolic)

Let D be a parabolic Monge-Ampere system on a manifold \mathcal{M}. Then D has an integrable 2-form ω around each point such that $\partial \mathcal{D} \supset \omega$ (mod \mathcal{D}).

Then Monge characteristic system \mathcal{N} of \mathcal{D} is defined by $\mathcal{N} = \{ \mathcal{D}, \partial \mathcal{D}, \mathcal{N} \}$.

Theorem 3 (parabolic)

Let D be a parabolic Monge-Ampere system on a manifold \mathcal{M}. Then D has an integrable 2-form ω around each point such that $\partial \mathcal{D} \supset \omega$ (mod \mathcal{D}).

Then Monge characteristic system \mathcal{N} of \mathcal{D} is defined by $\mathcal{N} = \{ \mathcal{D}, \partial \mathcal{D}, \mathcal{N} \}$.

Theorem 4 (parabolic)

Let D be a parabolic Monge-Ampere system on a manifold \mathcal{M}. Then D has an integrable 2-form ω around each point such that $\partial \mathcal{D} \supset \omega$ (mod \mathcal{D}).

Then Monge characteristic system \mathcal{N} of \mathcal{D} is defined by $\mathcal{N} = \{ \mathcal{D}, \partial \mathcal{D}, \mathcal{N} \}$.