On the sharpness of Seeger-Sogge-Stein orders

Michael Ruzhansky
(Received March 2, 1998)

Abstract. We will extend the sharpness results on L^p- and $L^p - L^q$-continuity of Fourier integral operators for an arbitrary rank of the canonical projection. For the elliptic operators of small negative orders we will show that by a coordinate change they are equivalent to pseudo-differential operators.

Key words: Fourier integral operator, regularity, sharp estimates, pseudo-differential operator, Lagrangian manifold.

1. Introduction

Let X, Y be smooth paracompact n-dimensional manifolds. Let $d\sigma_X$ and $d\sigma_Y$ be the standard symplectic forms on T^*X and T^*Y and let Λ be a conic Lagrangian submanifold of $T^*X \setminus 0 \times T^*Y \setminus 0$, equipped with the symplectic form $d\sigma_X - d\sigma_Y$. We will assume that Λ is a local graph of a symplectomorphism from $T^*Y \setminus 0$ to $T^*X \setminus 0$. Let $T \in \mathcal{I}^\mu(X, Y; \Lambda)$ be a Fourier integral operator with the canonical relation Λ. The distributional kernel $K \in \mathcal{D}'(X \times Y)$ of T is a Lagrangian distribution of order μ whose wavefront set is contained in $\Lambda' = \{(x, \xi, y, \eta) : (x, \xi, y, -\eta) \in \Lambda\}$. The global theory of such operators can be found in [1]. Let $\pi_{X \times Y}$ be the natural projection from $T^*X \setminus 0 \times T^*Y \setminus 0$ to $X \times Y$. The deep result of Seeger, Sogge and Stein [5] states that for $1 < p < \infty$ and $\mu \leq -(n - 1)|1/p - 1/2|$ the operators $T \in \mathcal{I}^\mu(X, Y; \Lambda)$ are continuous from $L^p_{comp}(Y)$ to $L^p_{loc}(X)$. This result is sharp if T is elliptic and $d\pi_{X \times Y}|_{\Lambda}$ has full rank equal to $2n - 1$ anywhere, which follows from the stationary phase method as in [3]. Somewhat different approaches to this are in [6] and [7]. If the rank of the canonical projection on Λ can be bounded from above by

$$\text{rank } d\pi_{X \times Y}|_{\Lambda} \leq 2n - k$$

with some $1 \leq k \leq n$, then under the so-called smooth factorization condition introduced in [5] the operators $T \in \mathcal{I}_\rho^\mu(X, Y; \Lambda)$, $1/2 \leq \rho \leq 1$, are continuous from $L^p_{comp}(Y)$ to $L^p_{loc}(X)$ for $1 < p < \infty$ and $\mu \leq -(n - k\rho)|1/p - 1/2|$.

1991 Mathematics Subject Classification: 35S30, 58G15.
In [4] the factorization condition is shown to be satisfied in a number of important cases, if a phase function of the operator is analytic.

Using analysis of some convolution operators in [8], it was shown in [5] that there exist conormal operators with constant rank $d\pi_{X \times Y} |_{\Lambda} \equiv 2n - k$, for which the estimate of the critical order μ is sharp. We want to show that for $\rho = 1$ this order is sharp for an arbitrary elliptic operator whose canonical relation satisfies inequality (1). The basic idea to test the L^p-continuity of an operator will be to investigate its behavior on the functions obtained from a δ-distribution at some $y_0 \in Y$ after the application of elliptic pseudo-differential operators of sufficiently negative orders. The only singularities of such functions are at y_0, meanwhile the singularities of T applied to them happen only in the directions transversal to some $(n - k)$-dimensional subset Σ_{y_0} of X. Finally, this will be applied to the continuous Fourier integral operators of zero order.

It was pointed out in [7, p. 398], that in \mathbb{R}^3 the operator $T : f \mapsto \frac{\partial}{\partial x_j}(f * d\sigma)$ with $j = 1, 2, 3$, and $d\sigma$ the usual measure on the unit sphere $S^2 \subset \mathbb{R}^3$, is essentially a Fourier integral operator of order 0, which is not continuous in $L^p(\mathbb{R}^3)$, $1 < p < \infty$. We will show that this is not a single example and derive a structural formula for the continuous elliptic Fourier integral operators of order 0 (Theorem 2) and then generalize it for small negative orders and $L^p \to L^q$ continuity (Theorem 3).

2. Results

By the equivalence-of-phase-function theorem as in [1, Th. 2.3.4] and [5] it is sufficient to consider operators in \mathbb{R}^n with kernel

$$K(x, y) = \int_{\mathbb{R}^n} e^{i[(x, \xi) - \phi(y, \xi)]} b(x, y, \xi) d\xi,$$

with some symbol $b \in S^\mu$ vanishing for x, y outside a compact set and phase function satisfying

$$\det \phi_{y\xi}' \neq 0$$

on the support of b, which is equivalent to Λ being a canonical graph. Locally Λ is the set of the form $\{(\nabla_x \phi, \xi, y, \nabla_y \phi)\}$. We begin with the following

Proposition 1 Let $T \in I^\mu(X, Y; \Lambda)$ be elliptic. Assume that the canon-
ical relation \(\Lambda \) is a local graph and rank \(d\pi_{X \times Y}|_{\Lambda} \equiv 2n - k \), \(1 \leq k \leq n \). Then \(T \) is not bounded as a linear operator \(L^{p}_{comp}(Y) \rightarrow L^{p}_{loc}(X) \), if \(\mu > -(n - k)|1/p - 1/2|, 1 < p < \infty \).

Proof. By the above reduction it is sufficient to restrict ourselves to the case of \(\mathbb{R}^{n} \) and operators satisfying (2) and (3). Let \(P_{-s} \in \Psi^{-s}(Y) \) be an elliptic pseudo-differential operator in \(Y \) and consider \(f_{s}(y) = (P_{-s}\delta_{y_{0}})(y) \). Then by Schwartz kernel theorem \(f_{s}(y) = \int K_{-s}(y, z)\delta_{y_{0}}(z)dz = K_{-s}(y, y_{0}) \), and in view of the kernel estimates for pseudo-differential operators in, for example, [7, p. 241, 245], we have \(|K_{-s}(y, y_{0})| \leq C|y - y_{0}|^{-n+s} \) in some local coordinate system. It follows that \(f_{s} \in L^{p}_{loc} \) if and only if \(s > n(1 - 1/p) \).

We assume here \(1 < p \leq 2 \), for the rest would follow by considering the adjoint operators.

Let \(\Sigma = \pi_{X \times Y}(\Lambda) \). Then in view of the assumption on the rank of \(\pi_{X \times Y} \), \(\Sigma \subset X \times Y \) is a smooth submanifold of codimension \(k \). Let \(\Sigma \) be given by the set of equations \(h_{j}(x, y) = 0, 1 \leq j \leq k \), in a neighborhood of \(y_{0} \), where \(\nabla h_{1}, \ldots, \nabla h_{k} \) are linearly independent. Then \(\Lambda \) is the conormal bundle of \(\Sigma \) and the phase function of \(T \) may be given by

\[
\psi(x, y, \lambda) = \sum_{j=1}^{k} \lambda_{j}h_{j}(x, y).
\]

Let \(T_{s} = T \circ P_{-s} \). Then \(T f_{s}(x) = T_{s}(\delta_{y_{0}})(x) \) and the canonical relations of \(T_{s} \) and \(T \) coincide, since a composition with a pseudo differential operator leaves it invariant. The operator \(T_{s} \) is of order \(\mu - s \) and in local coordinates it can be expressed as

\[
T f_{s}(x) = \int_{\mathbb{R}^{n}} \left(\int_{\mathbb{R}^{k}} e^{i\sum_{j=1}^{k} \lambda_{j}h_{j}(x, y)}a(x, \lambda)d\lambda \right)dy
= \int_{\mathbb{R}^{k}} e^{i\langle \lambda, \tilde{h}(x, y_{0}) \rangle}a(x, \lambda)d\lambda
= (2\pi)^{k}\tilde{a}(x, \tilde{h}(x, y_{0})),
\]

where \(\tilde{\lambda} \) and \(\tilde{h} \) are the vectors with the components \(\lambda_{j} \) and \(h_{j} \) respectively, and \(a \in S^{\mu-s+(n-k)/2}(\mathbb{R}^{k}) \) is a symbol of \(T_{s} \) after applying the stationary phase method and integrating away \((n - k) \)-variables. Now, the inverse Fourier transform of \(a \) in the second variable is \((2\pi)^{k}\tilde{a}(x, \zeta) = \int_{\mathbb{R}^{k}} e^{i\langle \lambda, \zeta \rangle}a(x, \lambda)\delta_{0}(\lambda)d\lambda = P_{0}\delta_{0}(\zeta) = K_{0}(\zeta, 0) \) and this is equivalent to \(|\zeta|^{-k - \text{ord}(a)} \), where \(P_{0} \in \Psi^{\text{ord}(a)}(\mathbb{R}^{k}) \) with symbol equal to \(a(x, \lambda) \) and \(K_{0} \).
is a distributional kernel of P_0. In view of $\text{dist}(x, \Sigma_{y_0}) \approx |\tilde{h}(x, y_0)|$ with $\Sigma_{y_0} = \{x : (x, y_0) \in \Sigma\}$ and formulas above, we have $(2\pi)^k \tilde{a}(x, \tilde{h}(x, y_0)) \sim \text{dist}(x, \Sigma_{y_0})^{-k-(\mu-s+(n-k)/2)}$, locally uniformly in x. Formula (4) implies that T_{f_s} is smooth along Σ_{y_0}, so $T_{f_s} \notin L^p_{\text{loc}}(\mathbb{R}^n)$ if and only if $p(k+\mu-s+(n-k)/2) \geq k$, or, equivalently, $s \leq \mu+k(1-1/p)+(n-k)/2$. Together with condition on $f_s \in L^p_{\text{loc}}$ this implies that T is not continuous in L^p-norms if such s exists, i.e. when $\mu > -(n-k)|1/p-1/2|$. This completes the proof.

Assume now that the operator T is not conormal and that (1) is satisfied with $2n-k$ at some point. Then the set $\Lambda_0 = \{\lambda \in \Lambda : \text{rank } \pi_{X \times Y}|_{\Lambda}(\lambda) = 2n-k\}$ is nonempty and open in Λ. Applying the equivalence of the phase function and the same argument as in Proposition 1 at some $\lambda_0 = (x_0, \xi_0, y_0, \eta_0) \in \Lambda_0$, we get

Theorem 1 Let $T \in \mathcal{I}^\mu(X, Y; \Lambda)$ be elliptic. Assume that the canonical relation Λ is a local graph and that $\text{rank } \pi_{X \times Y}|_{\Lambda} \leq 2n-k$, $1 \leq k \leq n$, equal to $2n-k$ at some point. Then T is not bounded as a linear operator $L^p_{\text{comp}}(Y) \to L^p_{\text{loc}}(X)$, if $\mu > -(n-k)|1/p-1/2|$, $1 < p < \infty$.

The application of the arguments of [5] to Theorem 1 yields that an operator T as in Theorem 1 is not bounded as a linear operator in Sobolev spaces $L^p_{\alpha} \to L^p_{\alpha-(n-k)|1/p-1/2|-\mu}$, $1 < p < \infty$.

It is well known ([2]) that pseudo-differential operators of zero order are continuous in L^p-spaces, $1 < p < \infty$. It turns out that all elliptic Fourier integral operators with this property can be obtained from pseudo-differential operators by a smooth coordinate change in one of the spaces X or Y. For a smooth map $\kappa : X \to Y$ the pullback by κ is a mapping $\kappa^* : C^\infty(Y) \to C^\infty(X)$ defined by $(\kappa^* f)(x) = f(\kappa(x))$. This pullback is a Fourier integral operator with the canonical relation corresponding to the phase function $(\kappa(x) - y, \eta)$ and given by the graph of the induced transformation $\tilde{\kappa} : T^*X\backslash 0 \to T^*Y\backslash 0$ with $\tilde{\kappa}(x, \xi) = (\kappa(x), -(t^iD\kappa_x)^{-1}(\xi))$. See [1, 2.4] for more detailed discussion.

Theorem 2 Let $T \in \mathcal{I}^0(X, Y; \Lambda)$ be elliptic and assume Λ to be a local graph, $1 < p < \infty$, $p \neq 2$. Then T is continuous from $L^p_{\text{comp}}(Y)$ to $L^p_{\text{loc}}(X)$ if and only if there exist $P \in \Psi^0(X), Q \in \Psi^0(Y)$, such that $T = P \circ \kappa^*_+ = \kappa^*_- \circ Q$, where κ^*_- and κ^*_+ are the pullbacks by smooth coordinate changes $X \to Y$.
Proof. The operators κ_+^* and κ_-^* are clearly L^p continuous, and this together with the continuity of pseudo-differential operators of order 0 imply the continuity of T. Conversely, let k be a minimal codimension of $\Sigma = \pi_{X \times Y}(\Lambda)$ in $X \times Y$, i.e. $2n - k = \max_{\lambda \in \Lambda} \text{rank} d\pi_{X \times Y}|_{\Lambda}(\lambda)$. Then Theorem 1 together with our assumption of the continuity of T imply $k = n$. This means that $\text{rank} d\pi_{X \times Y}|_{\Lambda} = n$ and Σ is a smooth n-dimensional submanifold of $X \times Y$. The rank of $d\pi_X|_{\Sigma}$ of the projection $\pi_X : X \times Y \to X$ is equal to n in view of the assumption on Λ to be a local graph. The surjectivity of $d\pi_X|_{\Sigma}$ together with $\dim \Sigma = n$ imply that $\pi_X|_{\Sigma}$ is a diffeomorphism, and locally $\Sigma = \{(x, \sigma(x))\}$, σ a diffeomorphism. The pullback operator $\kappa_+^* = \sigma^*$ has the canonical relation equal to the conormal bundle of Σ, which is Λ, implying that the operator Q in $T = \kappa_+^* \circ Q$ is pseudodifferential. The same argument applies for Y space to yield the second part of the Theorem. \qed

Finally we would like to make some remarks about $L^p(Y) \to L^q(X)$-continuity. Under the factorization assumptions of [5], the interpolation between $L^p \to L^p$ and $H^1 \to L^2$ for operators of order $-n/2$ ([7, Ch. 3.5.21]) yields that for $1 < p \leq q \leq 2$ and $2 \leq p \leq q < \infty$ the operators $T \in I^\mu(X, Y; \Lambda)$ are continuous from $L^p(Y)$ to $L^q(X)$ for $\mu \leq -n/p + k/q + (n - k)/2$. Note that for $k = 1$ we get the orders of [7, Ch. 9.6.15]. The technique of the proof of Proposition 1 can be applied to show that an elliptic operator $T \in I^\mu(X, Y; \Lambda)$ with maximal rank equal to $2n - k$ at some point is not continuous from $L^p(Y)$ to $L^q(X)$ if $\mu > (n - k)/2 - n/p + k/q$, which shows that the orders above are sharp. A straightforward generalization of Theorem 2 yields

Theorem 3 Let $T \in I^\mu(X, Y; \Lambda)$ be elliptic and assume Λ to be a local graph, $1 < p \leq q < 2$. Assume that $-n(1/p - 1/q) \geq \mu \geq -(1/q - 1/2) - n(1/p - 1/q)$. Then T is continuous from $L^p_{\text{comp}}(Y)$ to $L^q_{\text{loc}}(X)$ if and only if there exist $P \in \Psi^\mu(X)$, $Q \in \Psi^\mu(Y)$, such that $T = P \circ \kappa_-^* = \kappa_+^* \circ Q$, where κ_-^* and κ_+^* are the pullbacks by smooth coordinate changes $X \to Y$.

The converse statement follows from $L^p \to L^q$-continuity of pseudo-differential operators of order $-n(1/p - 1/q)$, which can be obtained from [7, Ch. 9.6.15] by Hardy-Littlewood argument or by interpolation between $H^1 \to L^2$ and $L^p \to L^p$ for zero order operators. Note that the argument of Proposition 1 with $k = n$ implies that this order is also sharp. By duality...
the same conclusion holds for $2 < p \leq q < \infty$. Finally we would like to note that because the graphs of the transformations κ^*_+ and κ^*_- in Theorems 2 and 3 are the same, it follows that κ_+ and κ_- are equal.

Acknowledgments I would like to thank professor J.J. Duistermaat for discussions and his important contribution to my understanding of Fourier integrals.

References

Mathematical Institute
University of Utrecht
P.O. Box 80.010, 3508 TA Utrecht
The Netherlands
E-mail: M.Ruzhansky@math.ruu.nl

Current address:
Department of Mathematics
Johns Hopkins University
3400 N. Charles Street
Baltimore, MD 21218, U.S.A.
E-mail: ruzan@math.jhu.edu