桂田芳枝 (Yoshie Katsurada, 1911-1980)

明治44年(1911) 9月 北海道余市郡赤井川村に生まれる
父は余市町の小学校校長
大正13年(1924) 小樽高等女学校 入学
姉 静枝は同校の裁縫教師
東京物理学校出身の北村教諭に数学の特別指導を受ける
昭和4年(1929) 小樽高等女学校卒業後,実家の家事手伝いをしながら数学の勉強に打ち込む
昭和6年(1931) 東京物理学校聴講生
昭和11年(1936) 姉 静枝の紹介で北海道大学数学教室の事務補助員となる
昭和13年(1938) 東京女子大学数学専攻部 入学
在学中に師範学校中学校高等女学校教員検定試験に合格
昭和15年(1940) 東京女子大学数学専攻部 退学
北海道帝国大学理学部 入学
昭和17年(1942) 北海道帝国大学理学部 卒業 (第11期生)
北海道帝国大学理学部 助手 (数学教室第二講座)
昭和25年(1950) 7月 理学博士 (指導教授:河口商次)
学位論文 “On the operations of extensors referred to a nonholonomic system in a space of higher order”
数学で初の女性理学博士となる
11月 北海道大学理学部 助教授 (数学教室第二講座)
昭和31年(1956) 12月
〜昭和33年(1958) 4月
ローマ大学国立高等数学研究所,スイスETHに滞在し,部分多様体論の研究に従事
昭和41年(1966) 夏
〜昭和42年(1967) 秋
カリフォルニア大学バークレー校,スイスETHに滞在し,部分多様体論の研究に従事
昭和42年(1967) 10月 北海道大学理学部 教授 (数学教室幾何学講座)
旧帝国大学で初の女性教授となる
昭和48年(1973) 6月 北海道大学評議員
11月 北海道文化賞受賞 (北海道)
昭和50年(1975) 4月 北海道大学 退官
昭和55年(1980) 5月
指導した学生
永井玉夫
香城日出麿
小柳常平
村守隆男
田沢義彦
白井一男
溝口宣夫
福井昌樹
相田豊子
藤村茂芳
長谷川和泉
諸橋正之
山内一也
渡邊正夫
坂口敏夫
丹羽達夫
山口敏清

参考文献:
北大理学部五十年史 (北海道大学理学部 1980年)
ほっかいどう百年物語 第4集 (STVラジオ編,中西出版 2004年)
山本美穂子「北海道帝国大学における女性の入学」 (北海道大学文書館年報)

Papers by Yoshie Katsurada

  1. On the theory of curves in a higer order space with some special metrics, Tensor 7 (1944), 58-64.
  2. Generalized Gauss - Bonnet theorem, Tensor 9 (1949), 30-37.
  3. (with A. Kawaguchi) On a connection in an areal space, Bull. Inst. Politech. Iasi 4 (1949), 369-385.
  4. On the connection parameters in a non-holonomic space of line-elements, J. Fac. Sci. Hokkaido Univ. Ser. I. 11 (1950), 129 - 149
  5. On the non-holonomic connection of extensors, Tensor N.S. 1 (1951), 60 - 66.
  6. Non-holonomic system in a space of higher order. I. On the operations of extensors, J. Fac. Sci. Hokkaido Univ. Ser. I. 11 (1951), 190 - 217.
  7. On the theory of non-holonomic systems in the Finsler space, Tôhoku Math. J. 3 (1951), 140 - 148.
  8. (with A. Kawaguchi) On areal spaces. IV. Connection parameters in an areal space of general type, Tensor (N.S.) 1 (1951), 137 - 156
  9. (with A. Kawaguchi) On a connection in an areal space, Japanese J. Math. 21 (1951), 249 - 262 (1952)
  10. On the extended connection parameters in a space with affine connection and in a Riemannian space, J. Fac. Sci. Hokkaido Univ. Ser. I. 12 (1951), 17 - 28.
  11. Non-holonomic system in a space of higher order. II. On the theory of extensors on the subspace. J. Fac. Sci. Hokkaido Univ. Ser. I. 12 (1951), 29 - 41.
  12. Specialization of the theory of a space of higher order. I. On the extended non-holonomic system, Japanese J. Math. 21 (1951), 237 - 248 (1952)
  13. Specialization of the theory of a space of higher order. II. On the extended Lie derivative, Tensor (N.S.) 2 (1952), 15 - 26.
  14. Specialization of the theory of a space of higher order. III. On the extended projective and conformal invariants, Tensor (N.S.) 2 (1952), 181 - 188.
  15. A geometrical consideration of the Craig excovariant differential, Tensor (N.S.) 2 (1952), 80 - 84.
  16. On the parallel displacement of arc, Tensor (N.S.) 2 (1952), 85 - 88.
  17. On the parallel displacement of subspaces in an affinely connected space, Tensor (N.S.) 3 (1953), 1 - 12.
  18. On the intrinsic derivative in the non-holonomic exsurface, J. Fac. Sci. Hokkaido Univ. Ser. I. 12 (1953), 157 - 162.
  19. On the theory of parallel paths, Tensor (N.S.) 4 (1954), 1 - 8.
  20. On the functional tensor attached to an arc, Tensor (N.S.) 4 (1954), 16 - 27.
  21. On the curvature of a metric space with torsion tensor admitting parallel paths, Tensor (N.S.) 5 (1955), 85 - 90.
  22. On a theory of generalized crossed extensors and the functional tensors attached to a subspace, Tensor (N.S.) 5 (1956), 143 - 163.
  23. Alcune trasformazioni parallele di varietà algebriche {H,K} di Del Pezzo-Segre, Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 22 (1957), 719 - 725.
  24. On the parallel displacement of arc holding some instrinsic properties, Publ. Math. Debrecen 7 (1960), 302 - 309.
  25. Varietà {H,K} di Del Pezzo-Segre attaccate ad una Mn differenziabile e loro trasformazioni infinitesime, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 32 (1962), 335 - 345.
  26. Generalized Minkowski formulas for closed hypersurfaces in Riemann space, Ann. Mat. Pura Appl. 57 (1962), 283 - 293.
  27. On a certain property of closed hypersurfaces in an Einstein space, Comment. Math. Helv. 38 (1964), 165 - 171.
  28. On the isoperimetric problem ina a Riemann space, Comment. Math. Helv. 41 (1966), 18 - 29.
  29. On a piece of hypersurface in a Riemannian manifold with mean curvature bounded away from zero, Trans. Amer. Math. Soc. 129 (1967), 447 - 457.
  30. Some congruence theorems for closed hypersurfaces in Riemann spaces. I. Method based on Stokes' theorem, Comment. Math. Helv. 43 (1968), 176 - 194.
  31. (with H. Hopf) Some congruence theorems for closed hypersurfaces in Riemann spaces, II. Method based on a maximum principle, Comment. Math. Helv. 43 (1968), 217 - 223.
  32. (with T. Nagai) On some properties of a submanifold with constant mean curvature in a Riemann space. J. Fac. Sci. Hokkaido Univ. Ser. I 20 (1968), 79 - 89.
  33. (with H. Kôjyô) Some integral formulas for closed submanifolds in a Riemann space, J. Fac. Sci. Hokkaido Univ. Ser. I 20 (1968), 90 - 100.
  34. Closed submanifolds with constant ν-th mean curvature related with a vector field in a Riemannian manifold, J. Fac. Sci. Hokkaido Univ. Ser. I 20 (1969), 171 - 181.
  35. Some characterizations of a submanifold which is isometric to a sphere, J. Fac. Sci. Hokkaido Univ. Ser. I 21 (1970), 85 - 96.
  36. (with H. Hopf) Some congruence theorems for closed hypersurfaces in Riemann spaces. III. Method based on Voss' proof, Comment. Math. Helv. 46 (1971), 478 - 486.
  37. Some congruence theorems for closed hypersurfaces in Riemann spaces. III (continued), Hokkaido Math. J. 3 (1974), 133 - 142.
  38. A certain congruence theorem for closed hypersurfaces in a space of constant curvature, Ann. Mat. Pura Appl. 102 (1975), 61 - 69.
  39. (with T. Nagai and H. Kôjyô) On submanifolds with constant mean curvature in a Riemannian manifold, Publications of the Study Group of Geometry, Vol. 9. Study Group of Geometry, 京都大学教養部数学教室, 1975, 137 pp.
  40. A certain congruence theorem for closed submanifolds of codimension 2 in a space of constant curvature, Collection in memory of Enrico Bompiani. Boll. Un. Mat. Ital. 12 (1975), 257 - 266.
  41. A certain congruence theorem for closed submanifolds of codimension 2 in a space of constant curvature, II. Hokkaido Math. J. 6 (1977), 56 - 65.